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This paper considers nonlinear acoustic waves propagating unidirectionally in a gas-
filled tube under an axial temperature gradient, and examines whether the energy
flux of the waves can be amplified by thermoacoustic effects. An array of Helmholtz
resonators is connected to the tube axially to avoid shock formation which would
otherwise give rise to nonlinear damping of the energy flux. The amplification is
expected to be caused by action of the boundary layer doing reverse work, in the
presence of the temperature gradient, on the acoustic main flow outside the boundary
layer. By the linear theory, the velocity at the edge of the boundary layer is given
in terms of the fractional derivatives of the axial velocity of the gas in the acoustic
main flow. It is clearly seen how the temperature gradient controls the velocity at the
edge. The velocity is almost in phase with the heat flux into the boundary layer from
the wall. With effects of both the boundary layer and the array of resonators taken
into account, nonlinear wave equations for unidirectional propagation in the tube
are derived. Assuming a constant temperature gradient along the tube, the evolution
of compression pulses is solved numerically by imposing the initial profiles of both
an acoustic solitary wave and of a square pulse. It is revealed that when a positive
gradient is imposed, the excess pressure decreases while the particle velocity increases
and that the total energy flux can indeed be amplified if the gradient is suitable.

1. Introduction
Nonlinear acoustic waves propagating in a gas-filled tube generally tend to evolve

into a shock as the magnitude of pressure disturbances becomes large. When the
shock emerges, it gives rise to nonlinear damping in addition to linear damping, due
mainly to wall friction through a boundary layer. Then the energy flux carried by the
waves decays significantly. In this sense, intense compression pulses are commonly
incapable of transferring energy over a long distance.

It has recently been revealed, however, that shock-free propagation can be achieved
by connecting a suitable array of Helmholtz resonators to the tube axially (Sugimoto
1992). Particularly in the lossless limit, an acoustic solitary wave without a shock
can propagate without any change of form at a constant subsonic speed (Sugimoto
1996; Sugimoto et al. 1999). The solitary wave is the compression pulse and it can
convey energy steadily, as well as mass and momentum (Sugimoto 2000). In reality,
however, the solitary wave is subjected to linear damping due to wall friction and also
diffusivity of sound. But it would be interesting to know if the total energy can be
maintained against the loss effects or can even be amplified, which would find many
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applications. To achieve this, we consider exploitation of thermoacousitc effects by
imposing a temperature gradient along the tube.

When a temperature gradient is present, there are two effects involved in prop-
agation: one is a lossless effect due to non-uniformity in the equilibrium state and
the other is a loss effect due to the boundary layer. For the former, it has already
been shown that the excess pressure and the particle velocity behave oppositely, as
−1/4 and +1/4 powers of the local equilibrium temperature, respectively, so that
the energy flux is kept constant (Sugimoto & Tsujimoto 2001). This power law is a
consequence of the geometrical acoustics, i.e. the conservation of energy flux over a
ray tube (Pierce 1991). The ray tube in the present case is the tube itself so that the
cross-sectional area is constant, and the acoustic impedance decreases in proportion
to the inverse of the square root of the local equilibrium temperature. While such a
law is valid in the short-term, the solitary wave gives rise to fission or oscillatory tails
in the long-term. Taking full account of both the lossless and loss effects, this paper
examines propagation of not only the solitary wave but also a smoothed square pulse
to examine the feasibility of amplification of the energy flux.

Acoustic waves interacting with a solid boundary in a temperature gradient have
provided many interesting thermoacoustic phenomena. They have recently attracted
much attention from the viewpoint of realizing thermoacoustic heat engines (Wheatley
1986; Swift 1988, 1995; Yazaki et al. 1998; Backhaus & Swift 1999). In general,
however, thermoacousitc phenomena do not seem to be understood clearly even from
the standpoint of the linear theory of fluid dynamics. This is because the boundary
layer exhibits a hereditary (or memory) effect even in a Newtonian fluid, which gives
rise to a phase lag of multiples of ±π/4 for a harmonic wave. This intermediate phase
lag has obscured intuitive understanding of the phenomena. But use of fractional
calculus will resolve this problem to some extent.

The boundary layer including the heat conduction was treated first by Kirchhoff
(1868) for a time-harmonic disturbance and later extended by Chester (1964) to
a general disturbance. In the context of the thermoacoustics where a temperature
gradient is present on the wall, Rott (1969, 1973) has developed a theory to examine
the conditions of the onset of self-excited oscillations. In the spirit of Kirchhoff,
Chester and Rott and assuming a general disturbance, the linear theory of the
boundary layer is developed here by using fractional calculus. It is shown that the
velocity vb at the edge of the boundary layer directed away from the wall (see figure 1)
is given by

vb = −
(

1 +
γ − 1√
Pr

) √
νe

ρea2
e

∂1/2p′

∂t1/2
+

(
1

2
+

1√
Pr + Pr

) √
νe

Te

dTe
dx

∂−1/2u

∂t−1/2
, (1.1)

where p′(x, t) and u(x, t) denote, respectively, the excess pressure and the particle
velocity parallel to the wall outside the boundary layer, called the acoustic main flow,
x and t being the axial coordinate and the time, respectively; ρe(x), Te(x), νe(x) and
ae(x) denote, respectively, the density of the gas in the local equilibrium state, the
wall temperature, the kinematic viscosity and the linear sound speed, γ and Pr being
the ratio of the specific heats and the Prandtl number. Here the fractional derivatives
of order α (α = −1/2 or 1/2) of a function f(x, t) are defined as (see e.g. Sugimoto
1989)

∂αf

∂tα
=

1√
π

∫ t

−∞
1√
t− τ

∂α+1/2

∂τα+1/2
f(x, τ)dτ. (1.2)

The relation (1.1) generalizes Rott’s result (Rott 1980, equation (2.20) with n = 1 and
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Figure 1. Illustration of the region of the acoustic main flow and the boundary layer (exaggerated
in scale) in the tube where vb and Qn represent, respectively, the velocity at the edge of the boundary
layer directed into the main-flow region and the heat flux into the boundary layer through the wall.
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Figure 2. Profiles of the compression pulse F and of its fractional derivatives where the solid line
represents F(θ), which is the profile of the acoustic solitary wave given by (6.15) with s = 0.5, while
the broken and dotted lines represent profiles of its fractional derivatives of order 1/2 and −1/2,
respectively.

β = 0) derived in the case of a harmonic oscillation to include a general type of
disturbance.

By using this, we first consider how the energy of acoustic waves is lost in propa-
gation. In the absence of the temperature gradient, the second term in vb drops out.
Imagine the propagation of the compression pulse drawn as the solid line in figure 2,
where F and θ denote p′ and t, respectively and F is an even function. As shown in
the detailed explanation given in § 6.1, F is the pressure profile of the acoustic solitary
wave. The 1/2-order derivative of F is depicted as the broken line. It is characteristic
that the derivative is no longer even or odd but asymmetric with respect to θ = 0
and that a slowly decreasing tail appears. Looking at a fixed point in a boundary
layer when the pulse passes by, it is seen that vb is first negative so that the region
of the acoustic main flow, i.e. the pulse, pushes the boundary layer toward the wall.
In other words, the pulse does work −p′vb on the boundary layer per unit time.
But because vb changes sign as t increases, the boundary layer recoils to push back
the pulse. The recoil is the hereditary effect of the boundary layer. In this case, the
boundary layer does work on the pulse. From the graphs of figure 2, however, the
integration of −p′vb over the time, i.e. of F∂1/2F/∂θ1/2 over θ, is seen to be positive.
Therefore it follows that the pulse has done net work outward. If vb were given by
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the first-order derivative of p′, the integral would vanish and no net work would be
done. This difference is the essence of the action of the boundary layer. When the
pulse continues to do work outward, as is physically the case, its energy is lost so
that the pulse eventually decays.

If a temperature gradient is present, the second term in vb comes into play. Since
u is proportional to p′ for a wave travelling unidirectionally and the ratio p′/u is the
acoustic impedance ρeae, the second term is given by the derivative of p′ of −1/2-
order. The explicit form of the derivative of −1/2-order is depicted in figure 2 in the
dotted line where the algebraically decaying long tail is typical. From the definition,
the derivative always takes a positive value as long as p′ is positive. Therefore if the
temperature gradient dTe/dx is positive and steep enough, vb will become positive
when the excess pressure in the main flow is positive. This means that the boundary
layer does work on the main flow. If this condition continues to be met afterwards,
then the energy flux of the main flow tends to be increased. This is the mechanism of
amplification. It is also shown that vb is almost in phase with the heat flux from the
wall into the boundary layer. Therefore amplification occurs if the heat flux is into
(or out of) the boundary layer when p′ is positive (or negative). This is a restatement
of Rayleigh’s (necessary) criterion of the onset of instability: at the phase of greatest
condensation, heat is received by the air and at the phase of great rarefaction heat is
given up from it, and thus there is a tendency to maintain the vibrations (Rayleigh
1945).

Incidentally, in the case of a time-harmonic disturbance p′ in the form of exp(iωt),
the derivative of −1/2-order is reduced to the Fresnel integrals (see e.g. Abramowitz
& Stegun 1972) and is evaluated as 2−1/2(1− i) exp(iωt) = (iω)−1/2 exp(iωt). Thus the
derivative of −1/2-order lags in phase by π/4. The derivative of 1/2-order is defined
by differentiating it with respect to t once and therefore is given by (iω)1/2 exp(iωt)
so that it is greater by π/4. For a harmonic travelling wave in the positive direction
of x, u in (1.1) may be replaced by p′/ρeae and the condition for local amplification
that the integral of p′vb over one period should be positive is imposed on the
temperature gradient. It is easily shown that the gradient is required to be positive
and to satisfy the inequality T−1

e dTe/dx > Γω/ae to overcome the wall friction,

where Γ = 2(γ − 1 +
√
Pr)(1 +

√
Pr)/(2 +

√
Pr + Pr). The condition of a positive

gradient agrees quantitatively with the experimental result by Yazaki et al. (1998).
For a standing wave, u in (1.1) is related to a spatial gradient of p′ and the condition
for local amplification depends on the location x. In fact, the condition is given by
(T−1

e dTe/dx)(|P |−1d|P |/dx) > Γω2/a2
e , P (x) being a complex amplitude of the excess

pressure (see also Howe 1998†).
In what follows, we start by presenting the basic equations and considering the

equilibrium state for the temperature gradient on the tube wall in § 2. The acoustic
main flow outside the boundary layer is formulated in § 3 where the wave equa-
tions describing the bidirectional propagation are derived by taking account of the
nonlinearity, the boundary layer and the weak diffusivity of sound. The effect of the
boundary layer appears through vb only. To relate vb with the quantities in the acoustic
main flow, the linear theory of the boundary layer is developed in § 4 and vb is given
by (1.1). The equation for the array of resonators couples with the equations for the
main flow in just the same way as vb. Focusing on unidirectional propagation, § 5 is
devoted to derivation of the simplified nonlinear wave equations and to consideration

† This condition reduces to Howe’s result (6.5.5) if the dependence of νe on x is ignored, i.e. the

factor 1/2 in the second term of (1.1) (which results from ∂ ˆ̌u/∂x in (A 5) of Appendix A) is omitted.
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of the properties of the equations. In § 6, amplification of the energy flux is examined
by solving the evolution of an acoustic solitary wave and of a square pulse in the
case of a positive, constant temperature gradient. Some discussion is given on the
results. Finally, in Appendix B an example of initial-value problems in the linear case
is solved to provide a qualitative understanding of effects due to the wall friction and
the temperature gradient on wave propagation.

2. Basic equations and equilibrium state
This section presents the basic equations to be used for the analysis in the following

sections and considers the equilibrium state in the case of no gravity. The basic
equations consist of the equations of continuity, momentum and energy as follows:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ
Dv

Dt
= −∇p+ µ∆v + (µv + 1

3
µ)∇∇ · v, (2.2)

ρT
DS

Dt
= k∆T + Φ, (2.3)

with D/Dt = ∂/∂t+ v · ∇ where ρ, v, p, T and S denote, respectively, density, velocity
vector, pressure, temperature and entropy, and Φ denotes the viscous dissipation
function quadratic in the rate of strain; µ, µv and k denote, respectively, the coefficients
of the shear and bulk viscosities and the thermal conductivity. The dependence of
these material constants on temperature is ignored for simplicity and they are taken
to be constants. Equations (2.1) to (2.3) are supplemented by the two equations of
state which account for the thermodynamic quantities by two independent variables.
Assuming an ideal gas, the pressure is expressed in terms of the density and the
temperature as

p

p0

=
ρT

ρ0T0

, (2.4)

with p0 = Rρ0T0, R being the gas constant, where the subscript 0 for ρ, p, T (and S
below) denotes the respective constant values in the reference equilibrium state. The
pressure can alternatively be expressed in terms of ρ and S as

p

p0

=

(
ρ

ρ0

)γ
exp

(
S − S0

cv

)
, (2.5)

with γ = cp/cv where cp and cv are specific heats at constant pressure and volume,
respectively.

We next consider the equilibrium state of the gas in the tube when the wall
temperature is kept constant temporally but varied in the axial direction. In the
quiescent state v = 0, p must be uniform throughout the tube, i.e. p = p0. The steady
field of the temperature must satisfy the Laplace equation from (2.3):

∆T = 0. (2.6)

Taking the x-axis in the axial direction of the tube, and the y- and z-axes in the
plane normal to the x-axis, and denoting the wall temperature by Tw(x), we seek
the equilibrium temperature of the gas, denoted by Te, in the form of the sum
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Te = Tw(x) +Θ(x, y, z). It then follows from (2.6) that

∂2Θ

∂x2
+
∂2Θ

∂y2
+
∂2Θ

∂z2
= −d2Tw

dx2
. (2.7)

We assume that a typical axial length l in the variation of the wall temperature is
much longer than a typical diameter of the tube such that∣∣∣∣∂2Θ

∂x2

∣∣∣∣� ∣∣∣∣∂2Θ

∂y2

∣∣∣∣ , ∣∣∣∣∂2Θ

∂z2

∣∣∣∣ . (2.8)

By this assumption, the first term on the left-hand side of (2.7) is ignored. For a
circular tube of radius R, the axisymmetric temperature field is then

Θ(r, x) =
1

4

d2Tw

dx2
(R2 − r2), (2.9)

where r is the radial coordinate from the centre axis. The mean temperature T̄e over
the cross-section of the tube is given by

T̄e =
1

πR2

∫ R

0

2πrTedr = Tw +
R2

8

d2Tw

dx2
. (2.10)

It is found from this that T̄e differs from Tw by the second term on the right-hand
side.

Since R � l, the magnitudes of the derivatives of Tw are ordered as

R2

∣∣∣∣d2Tw

dx2

∣∣∣∣� R

∣∣∣∣dTwdx

∣∣∣∣� |Tw|. (2.11)

In the following sections, variations of Tw are taken into account up to the first-order
derivative and the second-order one is neglected. Then Te is substantially equal to Tw ,
which is regarded as being linear with respect to x. Also the steady heat flux through
the wall −k∂Te/∂r is neglected and the heat flux exists only axially in the tube, i.e.
−k∂Te/∂x. We note that if Tw is strictly linear, its second-order derivative vanishes
automatically so that no approximations are involved.

The above approximation stipulates that the temperature of the gas in equilibrium
is equal to that of the wall and uniform over the cross-section of the tube. So the
overbar on Te is removed hereafter. Correspondingly the density, temperature and
entropy in the equilibrium state vary in the axial direction only. This dependence is
indicated by the subscript e. From (2.4) and (2.5), ρe(x), Te(x) and Se(x) must satisfy

ρeTe

ρ0T0

= 1, (2.12)

and (
ρe

ρ0

)γ
exp

(
Se − S0

cv

)
= 1. (2.13)

3. Formulation of the acoustic main flow
Propagation of nonlinear acoustic waves is characterized by the acoustic Mach

number ε and the acoustic Reynolds number Re defined, respectively, as

ε =
u0

a0

� 1,
1

Re
=
νω

a2
0

� 1, (3.1)
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where u0 and a0 denote, respectively, a typical speed of gas and a typical sound
speed, while ν (= µ/ρ) denotes the kinematic viscosity of the gas, ω being a typical
angular frequency. While Re is defined in reference to the sound speed and a typical
wavelength a0/ω, the Reynolds number referred to the flow induced, Ref , may be
defined as a0u0/νω, which is equal to εRe and so smaller by ε. We assume that the
acoustic Mach number is small but finite for quadratically nonlinear theory to be
required but the Reynolds number Ref is still large enough for dissipative effects to
be secondary except in a boundary layer, and a shock layer if any.

A typical thickness of the boundary layer is estimated to be (ν/ω)1/2. This is
assumed to be much smaller than the radius of the tube:

(ν/ω)1/2

R
=

1

Re1/2

a0/ω

R
� 1. (3.2)

By this, the smallness of 1/Re may be limited in relation to the ratio of the wavelength
a0/ω to the radius R, where the former is assumed, of course, to be much longer
than the latter. In addition, a typical axial length l of the temperature variations is
assumed to be much longer than the typical wavelength (R � a0/ω � l). This is
designated by a small parameter χ:

χ =
a0/ω

l
� 1. (3.3)

Under these assumptions, we define the region of acoustic main flow in the tube as
that excluding the thin boundary layer on the wall and the vicinity of the orifices from
the resonators. In this region, quasi-one-dimensional propagation can be assumed.
The acoustic main flow is formulated in the same manner as previously (Sugimoto
1992) except for treatment of the temperature variations in the equilibrium state.
Therefore the description here is kept to a minimum and readers are referred to that
paper for details.

Because of the presence of the boundary layer and the resonators, the acoustic
main flow deviates slightly from being rigorously one-dimensional. Let a physical
quantity in the region be given by the sum of a mean value over the cross-section of
the region and a small deviation from it, and let the basic equations presented in the
preceding section be averaged over the cross-section. We take into account all terms
up to the first order of the deviation. But we ignore the first-order deviation when
multiplied by the viscosity or the thermal conductivity, since the dissipative effects
are small. The deviation taken into account in the following is due solely to vn, which
is the velocity vb at the edge of the boundary layer where the tube wall exists or the
velocity −w of the flow into the tube from the resonator where there are orifices in
the wall. Hereafter the quantities ρ, u, p, T and S should be understood as the mean
values after being averaged, so they are regarded as functions of x and t only.

The equation of continuity is given by

∂ρ

∂t
+

∂

∂x
(ρu) =

1

A

∮
ρvnds, (3.4)

where A(x, t) is the cross-sectional area of the main-flow region and is dependent on x
and t, but no distinction from the constant cross-sectional area of the tube itself will
be made because the difference is small and higher order. The integral is taken along
the boundary of the main-flow region, ds being a line element along it. The equation
of momentum in the axial direction and the equation of energy take, respectively, the
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same form as those in the one-dimensional case:

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
+

1

ρ
( 4

3
µ+ µv)

∂2u

∂x2
, (3.5)

and

ρT

(
∂S

∂t
+ u

∂S

∂x

)
= k

∂2T

∂x2
+ ( 4

3
µ+ µv)

(
∂u

∂x

)2

. (3.6)

In view of (2.12) and (2.13), the equations of state (2.4) and (2.5) are expressed with
reference to the local equilibrium values dependent of x as

p

p0

=
ρ

ρe

T

Te
, (3.7)

and
p

p0

=

(
ρ

ρe

)γ
exp

(
S − Se
cv

)
. (3.8)

In the following, (3.7) and (3.8) are employed as the equations of state.
The conditions (3.1) assume that effects of nonlinearity and dissipation due to

viscosity and heat conduction (if Pr (= µcp/k) is of order unity) are small in
the acoustic main flow. Then it is governed, to the lowest approximation, by the
linearized and lossless versions of (3.4) and (3.5). But because those small effects
will be accumulated during propagation, they tend to become significant over long
time and space scales. We now estimate the dissipative effects. The viscous term is
apparently present in (3.5) while the effect of heat conduction gives rise to entropy
change in (3.6), which appears through the pressure gradient in (3.5). The small
entropy change is governed by the energy equation (3.6), which may be linearized
about the local equilibrium values by setting ρ = ρe +ρ′, T = Te +T ′ and S = Se +S ′
as

∂S ′

∂t
+ u

dSe
dx

=
k

ρeTe

∂2T ′

∂x2
, (3.9)

where the quantities with a prime are so small compared with the respective leading
terms that their quadratic terms may be neglected, u being designated without prime,
and d2Te/dx

2 is neglected by assumption. It is noted that the entropy changes not
only through the thermal diffusion on the right-hand side of (3.9) but also by the
convection of the second term on the left-hand side. Splitting S ′ into the convective
part S ′c and the diffusive part S ′d, i.e. S ′ = S ′c + S ′d, the respective temporal variations
are governed by

∂S ′c
∂t

= −udSe
dx

, (3.10)

and
∂S ′d
∂t

=
k

ρeTe

∂2T ′

∂x2
, (3.11)

where dSe/dx is related to the temperature gradient by using (2.12) and (2.13) as

dSe
dx

= − cp
ρe

dρe
dx

=
cp

Te

dTe
dx

. (3.12)

We now relate S ′d to u. Equations (3.7) and (3.8) are linearized to yield

p′

p0

=
γρ′

ρe
+
S ′

cv
,

T ′

Te
= (γ − 1)

ρ′

ρe
+
S ′

cv
, (3.13)
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with p′ = p− p0. Here note that the entropy change S ′/cv is much smaller than ρ′/ρe
and T ′/Te, which are of order ε, because (3.10) and (3.11) indicate that S ′c and S ′d are
proportional to the temperature gradient (see (3.12)) and the thermal conductivity,
respectively. By using (3.12), S ′c/cv is estimated to be of order χε while S ′d/cv will be
estimated by (3.18) to be of order ε/P rRe. Because 1/Re is much smaller than χ, S ′
is mainly due to S ′c.

Linearization of (3.5) with neglect of the viscous term leads to

∂u

∂t
= − 1

ρe

∂p′

∂x
= −a2

e

∂

∂x

(
ρ′

ρe

)
− p0

ρe

∂

∂x

(
S ′

cv

)
, (3.14)

where ae is the linear adiabatic sound speed defined by

ae =

(
γp0

ρe

)1/2

= (γRTe)1/2. (3.15)

Rewriting the right-hand side of (3.11) as

k

ρeTe

∂2T ′

∂x2
=

k

ρe

[
∂2

∂x2

(
T ′

Te

)
+

2

Te

dTe
dx

∂

∂x

(
T ′

Te

)
+

1

Te

d2Te

dx2

T ′

Te

]
, (3.16)

we neglect the second and third terms in the square brackets. While the neglect of the
third term is legitimate by assumption, the second term may also be neglected because
it is multiplied by the temperature gradient and smaller by χ than the first term, and
also because the entropy change is evaluated only at the lowest order. Using (3.13)
and (3.14) with S ′/cv neglected, the right-hand side of (3.11) may be approximated as

k

ρeTe

∂2T ′

∂x2
=

(γ − 1)k

ρe

∂2

∂x2

(
ρ′

ρe

)
= − (γ − 1)k

γp0

∂2u

∂x∂t
, (3.17)

where the derivative of ae with respect to x is dropped, consistent with the approxi-
mation that the temperature gradient has already been neglected in (3.17). Thus the
diffusive part of the entropy change can be evaluated just as in the case without the
temperature gradient as follows:

∂S ′d
∂x

= − (γ − 1)k

γp0

∂2u

∂x2
. (3.18)

The small entropy change affects (3.5) through the pressure gradient, which is
calculated by using (3.8) as

∂p

∂x
=
∂p

∂ρ

∂ρ

∂x
+
∂p

∂ρe

dρe
dx

+
∂p

∂S

∂S

∂x
+
∂p

∂Se

dSe
dx

, (3.19)

where p is regarded as a function not only of ρ and S but also of x through ρe and
Se. But the last term cancels out the second term owing to (2.13). Hence the pressure
gradient in (3.5) can be evaluated as

−1

ρ

∂p

∂x
= −γp

ρ

(
1

ρ

∂ρ

∂x
− 1

ρe

dρe
dx

)
− p

cvρ

(
∂S

∂x
− dSe

dx

)
, (3.20)

where the entropy change is given by

− p

cvρ

∂S ′

∂x
= − p0

cvρe

∂S ′c
∂x

+
(γ − 1)k

cpρe

∂2u

∂x2
. (3.21)

In the remainder of the treatment of the acoustic main flow, we follow a similar
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procedure to that used previously by expressing the density in terms of the local
adiabatic sound speed a defined by

a =

(
∂p

∂ρ

∣∣∣
S=Se,x

)1/2

= ae

(
ρ

ρe

)(γ−1)/2

. (3.22)

Using

1

ae

dae
dx

= − 1

2ρe

dρe
dx

=
1

2Te

dTe
dx

, (3.23)

it follows from (3.4) and (3.5) that[
∂

∂t
+ (u± a) ∂

∂x

] [
u± 2

γ − 1
(a− ae)

]
=

2

γ − 1
[(a− ae)a± (γa− ae)u]

(
1

ae

dae
dx

)

− p0

cvρe

∂S ′c
∂x
± a

A

∮
vnds+ νde

∂2u

∂x2
, (3.24)

with the signs vertically ordered, where νde denotes the diffusivity of sound defined by
νe[4/3 + µv/µ + (γ − 1)/Pr], νe being the kinematical viscosity µ/ρe. Here note that
νe and νde are functions of x determined by ρe. Equations (3.24) are supplemented by
(3.10), which is rewritten, for later use, in terms of the gradient of ae as

∂S ′c
∂t

+
2cp
ae

dae
dx

u = 0. (3.25)

Thus (3.24) with (3.25) are closed for u and a by relating vn to the quantities in the
main flow.

4. Treatment of the boundary layer and the resonators
This section is devoted to evaluation of vn. We first derive the expression for vb

given by (1.1) and then that due to the resonator.

4.1. Linear theory of the boundary layer

Since vb is assumed to be small, the boundary layer is treated within the linear theory.
The physical quantities in the boundary layer are assumed to be perturbed slightly
from the local equilibrium values. Let the density, pressure, temperature, entropy, axial
velocity and the velocity inward normal to the tube wall be represented, respectively,
by ρe+ ρ̃, p0 + p̃, Te+T̃ , Se+ S̃ , ũ and ṽ. The quantities with tilde are regarded as being
small and dependent not only on x and t but also on n, where n denotes the boundary-
layer coordinate taken inward normal to the tube wall at n = 0. Substitution of these
into the basic equations (2.1) to (2.3), and linearization about the local equilibrium
state lead to

∂ρ̃

∂t
+

∂

∂x
(ρeũ) +

∂

∂n
(ρeṽ) = 0, (4.1)

ρe
∂ũ

∂t
= −∂p̃

∂x
+ µ

∂2ũ

∂n2
, (4.2)

0 = −∂p̃
∂n
, (4.3)

ρeTe

(
∂S̃

∂t
+ ũ

dSe
dx

)
= k

∂2T̃

∂n2
, (4.4)
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where the boundary-layer approximation has been used. The non-slip and isothermal
boundary conditions are imposed on the tube wall as

ũ = ṽ = 0 and T̃ = 0 at n = 0. (4.5)

On the other hand, as the edge of the boundary layer is approached, i.e. n→ ∞, the
physical quantities should match with those in the acoustic main flow:

lim
n→∞ [ρe + ρ̃, p0 + p̃, Te + T̃ , Se + S̃ , ũ, ṽ] = [ρ, p, T , S , u, vb]. (4.6)

Here the quantities on the right-hand side of (4.6) satisfy (3.4) to (3.8), but their
linearized relations are sufficient for the treatment of the linear boundary layer.

So far we have not referred to (3.4), which is now linearized as

∂

∂t

(
ρ′

ρe

)
+
∂u

∂x
+

1

ρe

dρe
dx

u = 0. (4.7)

Here the right-hand side of (3.4) is much smaller and has been neglected. Using
ρ′/ρe = p′/ρea2

e − S ′/cp derived from the first relation of (3.13), and (3.10) with
S ′c ≈ S ′ to replace the first term of (4.7), it is reduced to the same equation as for the
adiabatic process in the case without the temperature gradient:

1

ρea2
e

∂p′

∂t
+
∂u

∂x
= 0 or

∂

∂t

(
p′

p0

)
+ γ

∂u

∂x
= 0. (4.8)

Equation (4.8) is also expressed in terms of T ′ by using p′/p0 = γ(T ′/Te−S ′/cp)/(γ−1)
derived from (3.13), and (3.10) as

∂

∂t

(
T ′

Te

)
+ (γ − 1)

∂u

∂x
+

1

Te

dTe
dx

u = 0. (4.9)

Elimination of p′ or u in (4.8) and (3.14) leads to the linear, lossless wave equations
with a temperature gradient:

∂2u

∂t2
= a2

e

∂2u

∂x2
or

∂2p′

∂t2
=

∂

∂x

(
a2
e

∂p′

∂x

)
. (4.10)

In view of the matching condition (4.6), we seek the boundary-layer solutions by
making the following replacement of the variables:

[ρe + ρ̃, p0 + p̃, Te + T̃ , Se + S̃ , ũ, ṽ] = [ρ+ ρ̌, p+ p̌, T + Ť , S+ Š , u+ ǔ, v̌], (4.11)

where the quantities with breve depend on n as well as x and t. Note the difference
between the quantities designated by a prime, tilde and breve. The quantities with
a prime and tilde represent, respectively, the small deviations in the main flow and
in the boundary layer from the local equilibrium state. The quantities with a breve
are introduced only for the sake of convenience of mathematical treatment and the
following relation holds except for ṽ and v̌: (̃ ) = ( )′+ ˇ( ). Substituting the replacement
(4.11) in (4.1), (4.2) and (4.4), and using the linearized relations for the acoustic main
flow, we have

∂ρ̌

∂t
+

∂

∂x
(ρeǔ) +

∂

∂n
(ρev̌) = 0, (4.12)

∂ǔ

∂t
= − 1

ρe

∂p̌

∂x
+
µ

ρe

∂2ǔ

∂n2
, (4.13)
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∂Š

∂t
+ ǔ

dSe
dx

=
k

ρeTe

∂2Ť

∂n2
. (4.14)

The boundary-layer approximation suggests that the pressure in the main flow
prevails into the boundary layer so that p̌ vanishes identically. Using this and the
equation of state (3.7), we obtain

ρ̌

ρe
+
Ť

Te
= 0, (4.15)

where the linearized version of (3.7) for the main flow has been used. From (3.8),
similarly, Š is derived as follows:

Š = −cpρ̌
ρe

=
cpŤ

Te
. (4.16)

Using p̌ ≡ 0, (4.13) and (4.14) with (3.12) are reduced to the following equations:

∂ǔ

∂t
= νe

∂2ǔ

∂n2
, (4.17)

and

∂Ť

∂t
+ ǔ

dTe
dx

=
νe

P r

∂2Ť

∂n2
, (4.18)

where νe/P r (= k/ρecp) is the thermal diffusivity and Pr is assumed constant. By
(4.11), the boundary conditions (4.5) and the matching conditions (4.6) are imposed
as follows:

ǔ = −u and Ť = −T + Te at n = 0, (4.19)

and

ǔ→ 0 and Ť → 0 as n→∞. (4.20)

Equations (4.17) and (4.18) are easily solvable by taking the Fourier transform with
respect to t. When ǔ and Ť are obtained, the velocity at the edge of the boundary
layer, denoted by vb, is obtained by integrating (4.12) from the wall to the edge of the
boundary layer at n = ∞ as

vb =

∫ ∞
0

∂v̌

∂n
dn =

∫ ∞
0

[
∂

∂t

(
Ť

Te

)
− ∂ǔ

∂x
+

1

Te

dTe
dx

ǔ

]
dn, (4.21)

where (4.15) and (3.12) have been used. Carrying out this integration (see Appendix
A), vb is obtained in terms of u as

vb =

(
1 +

γ − 1√
Pr

)√
νe
∂−1/2

∂t−1/2

(
∂u

∂x

)
+

(
1

2
+

1√
Pr + Pr

) √
νe

Te

dTe
dx

∂−1/2u

∂t−1/2
. (4.22)

This is the basic relation to associate the boundary layer with the main flow. The first
term on the right-hand side is due to the ordinary wall friction while the second term
is due to the temperature gradient. Both are expressed in terms of the derivative of
−1/2-order with respect to t but the first term is that of ∂u/∂x whereas the second
one is that of u itself. Hence note that the hereditary effects appear differently. Using
(4.8) to eliminate ∂u/∂x, vb is expressed in the mixed form of p′ and u as in (1.1).
Note also that expression (4.22), in the context of the linear theory of the boundary
layer, is valid even when the temperature gradient is not necessarily small, i.e. χ ≈ 1.

Finally the heat flux Qn through the wall into the boundary layer can also be
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calculated by

Qn = −k ∂
∂n

(Te + T̃ )
∣∣∣
n=0

= −k ∂Ť
∂n

∣∣∣
n=0
. (4.23)

This is given by

Qn = k

√
Pr

νe

[
(γ − 1)Te

∂−1/2

∂t−1/2

(
∂u

∂x

)
+

1

1 +
√
Pr

dTe
dx

∂−1/2u

∂t−1/2

]
, (4.24)

in terms of u or alternatively by

Qn = −k
√
Pr

νe

(
∂1/2T

∂t1/2
+

√
Pr

1 +
√
Pr

dTe
dx

∂−1/2u

∂t−1/2

)
, (4.25)

in terms of the mixed form of T and u (see Appendix A), where k
√
Pr/νe =

√
kcpρe.

Because
√
νe is proportional to

√
Te, the first term (4.24) (with the factor outside the

brackets) is proportional to
√
Te while the second term is proportional to 1/

√
Te.

Comparing (4.24) with (4.22), it is found that the first and second terms in the
respective equations agree with each other in the power of Te. Although the respective
sums of the first and second terms in vb and Qn are not proportional to each other,
even ignoring the dimensions, we will find that vb is directed almost in the same sense
as Qn. Here note that because the n component of the heat-flux vector vanishes at
the edge of the boundary layer, the heat flux does not enter the main-flow region but
is in the boundary layer along the wall.

4.2. Linear theory of Helmholtz resonators

Because the treatment of the Helmholtz resonator is given in a previous paper
(Sugimoto 1992), we only summarize the essential results. The resonator consists of a
bulbous cavity and a straight throat. The cavity shape may be arbitrary and the throat
cross-section may also be of arbitrary shape but uniform along its axis. The cavity
volume V is much larger than the throat volume BL, B and L being, respectively, the
cross-sectional area of the throat and its axial length.

For the gas in the cavity, no account of its motion is taken and only conservation
of mass is considered:

V
∂ρc

∂t
= Bq, (4.26)

where ρc and q denote, respectively, the mean density of the gas in the cavity and the
mean mass flux density into the cavity, which is averaged over the whole cross-section
of the throat. For the gas in the throat, no account of compressibility is taken because
a typical wavelength is assumed much longer than the throat length. This implies that
q is uniform in the axial direction of the throat. Noting this and that q also represents
the momentum density, the momentum balance of all the gas contained in the throat
yields

L
∂q

∂t
= −pc + p− Fr, (4.27)

where p is the pressure at the orifice on the tube side and Fr is the total friction force
on the throat wall. This force is given by

Fr =
2ρe
√
νeL

r

∂1/2w

∂t1/2
, (4.28)

where r and w denote, respectively, the hydraulic radius of the throat (not to be
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confused with r for the radial coordinate used only in § 2) and the mean velocity of
gas averaged over the whole cross-section of the throat. Note that w is uniform along
the throat.

Because we are concerned with the linear theory, it follows from (4.26) that

q = ρew =
V

B

∂ρ′c
∂t

=
V

Ba2
e

∂p′c
∂t
, (4.29)

where ρ′c (= ρc − ρe) and p′c (= pc − p0) are, respectively, the excess density and
pressure in the cavity, and the lowest relation p′c = a2

eρ
′
c has been used. Eliminating q

between (4.26) and (4.27), and using (4.28) and (4.29), we derive

∂2p′c
∂t2

+
2ν

1/2
e

r

∂3/2p′c
∂t3/2

+ ω2
e p
′
c = ω2

e p
′, (4.30)

where ωe (=
√
Ba2

e/LV ) is the natural angular frequency of the resonator and the
derivative of 3/2-order is defined by differentiating the one of 1/2-order once with
respect to t. Note that since ae depends on x, ωe varies with x. End corrections to the
throat are ignored here for simplicity (see Sugimoto 1992).

4.3. Evaluation of the integral

With vb and w thus specified, we can now evaluate the integral in (3.24). For treatment
of the array of resonators, we suppose that identical resonators are connected to the
tube with equal axial spacing d, which is assumed to be much smaller than a typical
wavelength in the tube. Each resonator is assumed to be small in the sense that the
cavity volume is much smaller than the tube volume per spacing. This is measured
by a small parameter κ defined by

κ =
V

Ad
� 1. (4.31)

These assumptions enable us to make a continuum approximation for a discrete
distribution of resonators, namely to average the integral in (3.24) per unit axial
length of x as

1

A

∮
vbds =

1

A

[(
2A

R
−NB

)
vb −NBw

]
, (4.32)

where R is the hydraulic radius of the tube and N (= 1/d) is the number density of
resonators per unit axial length. Substituting vb and w given, respectively, by (4.22)
and (4.29) into the right-hand side of (4.32), it follows that

1

A

∮
vnds =

2
√
νe

R∗

[
C
∂−1/2

∂t−1/2

(
∂u

∂x

)
+
CT

Te

dTe
dx

∂−1/2u

∂t−1/2

]
− κ

γp0

∂p′c
∂t
, (4.33)

with 1/R∗ = (1−NBR/2A)/R where R∗ is called the reduced radius of the tube, and
C and CT are defined, respectively, as

C = 1 +
γ − 1√
Pr

, CT =
1

2
+

1√
Pr + Pr

. (4.34)

5. Nonlinear wave equations
5.1. Derivation of the equations for unidirectional propagation

We now proceed to derive from (3.24) the equations describing unidirectional prop-
agation in the positive direction of x. We again remark that the right-hand sides are
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small quantities since they are due to the effects of viscosity, heat conduction and
the temperature gradient as well as the small effect of the resonators. If they are all
ignored, then the wave propagation is governed by the left-hand sides. It then follows
that

u± 2

γ − 1
(a− ae) = C± along the characteristics

dx

dt
= u± a, (5.1)

with the signs vertically ordered, where C± are well-known Riemann invariants.
Assuming an equilibrium state far ahead of propagation, we have a simple wave in
which one of the characteristics, C−, is taken to vanish so that

u =
2

γ − 1
(a− ae). (5.2)

In accordance with this, the following relations hold among the other variables within
the same approximation:

u

ae
=

2

γ − 1

(
a− ae
ae

)
=
ρe − ρ
ρe

=
p− p0

γp0

=
1

γ − 1

(
T − Te
Te

)
. (5.3)

These are simply the adiabatic relations which ignore the effect of the temperature
gradient. Using (5.2) and only taking account of linear terms on the right-hand side
of (3.24) with the upper sign, we can derive the equation for u which includes the
small effects on the right-hand side as

∂

∂t

[
∂u

∂t
+

(
ae +

γ + 1

2
u

)
∂u

∂x

]
=

∂

∂t

(
3

2
u

dae
dx

)
+

∂

∂x

(
uae

dae
dx

)

+
ae

2A

∂

∂t

∮
vnds+

νde

2

∂3u

∂t∂x2
, (5.4)

where S ′c has been eliminated by differentiating (3.24) with respect to t to use (3.25).
In order to focus on behaviour in the far field, we introduce a retarded time θ in a

frame moving with a local sound speed and a far-field coordinate X associated with
the nonlinearity ε, which are defined, respectively, by

θ = ω

(
t−
∫ x

0

dx

ae

)
, X = εω

∫ x

0

dx

ae
. (5.5)

By this transformation, the differential operators ∂/∂t and ∂/∂x are replaced, respec-
tively, by

∂

∂t
= ω

∂

∂θ
,

∂

∂x
= −ω

ae

∂

∂θ
+ ε

ω

ae

∂

∂X
. (5.6)

Then (5.4) is rewritten after integrated with respect to θ as

ε

ae

∂u

∂X
− γ + 1

2

u

a2
e

∂u

∂θ
=

ε

2a2
e

dae
dX

u+
1

2ωA

∮
vnds+

νdeω

2a3
e

∂2u

∂θ2
, (5.7)

where only the lowest-order terms among small quantities have been retained and
an integration constant dependent on X has been set equal to zero because of the
undisturbed state as θ → −∞ (i.e. x→∞).

Here we should make the following point. So far Te has been regarded formally
as a function of X. But the mild dependence of Te on X has now to be considered.
Since Te varies over the axial distance l, the original argument of Te is taken to be
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x/l. Therefore Te depends on X through the argument χX/ε. Thus the temperature
gradient is taken to be

1

Te

dTe
dX

=
χ

ε

Ḣe

He

with He =
Te

T0

, (5.8)

with T0 = Te at X = 0 where the dot over Te designates differentiation with respect
to the argument χX/ε and Ḣe/He is regarded as a quantity of order unity. In the
following, we assume that ε� χ.

To make u in (5.7) and p′c in (4.30) dimensionless, we set

εf ≡ (γ + 1)

2

u

ae

(
≈ (γ + 1)

2γ

p′

p0

)
, εg ≡ (γ + 1)

2γ

p′c
p0

, (5.9)

where f and g are assumed to be order of unity. By using these, it follows from (5.7)
that

∂f

∂X
− f ∂f

∂θ
+

1

4He

dHe

dX
f = −δe ∂

1/2f

∂θ1/2
+
λe

He

dHe

dX

∂−1/2f

∂θ−1/2
+ β

∂2f

∂θ2
−K∂g

∂θ
, (5.10)

and from (4.30) that

∂2g

∂θ2
+ δre

∂3/2g

∂θ3/2
+ Ωeg = Ωef, (5.11)

where the coefficients are defined as

δe = C

√
νe/ω

εR∗
, λe =

(
C

4
+ CT

) √
νe/ω

R∗
, β =

νdeω

2εa2
e

,

K =
κ

2ε
, δre =

2
√
νe/ω

r
, Ωe =

(ωe
ω

)2

 . (5.12)

These are the equations which include all the effects of nonlinearity, dissipation and
the array of resonators. The first two terms on the left-hand side of (5.10) represent
the spatial evolution of nonlinear acoustic waves propagating unidirectionally and the
third term represents the lossless effect due to the non-uniform equilibrium state with
the temperature gradient. Because of the assumption ε� χ and (5.8), the third term
dominates the second one so that the first term balances with the third one to the
lowest approximation, i.e. ∂f/∂X+(f/4He)dHe/dX ≈ 0. This relation may be derived
directly from the first equation of (4.10) for u by introducing the transformation (5.5).

On the other hand, the first and second terms on the right-hand side result from
vb and represent the effects due to the boundary layer. They are proportional to the
ratio of a typical thickness of the boundary layer

√
νe/ω to the reduced radius R∗,

and are expressed in terms of the derivatives of +1/2- and −1/2-order, respectively.
The third term is responsible for the diffusive effect inherent to the acoustic waves.
Although β appears to depend on x, it is independent of x because νe/a

2
e = µ/γp0 and

therefore the subscript e is dropped. The value of β is found to be extremely small
and negligible unless a shock structure is concerned. The last term is due to the array
of resonators and is the same as in the case without the temperature gradient. For
the response of the resonators, (5.11) is the same except that the coefficients depend
on Te.

By the normalization above, vb is expressed in terms of f as

vb =
2ε2ωR∗

γ + 1

(
−δe ∂

1/2f

∂θ1/2
+
λe

He

dHe

dX

∂−1/2f

∂θ−1/2

)
, (5.13)
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where the lowest-order relation ∂f/∂X+(f/4He)dHe/dX ≈ 0 has been used to replace
the term ∂f/∂X resulting from ∂u/∂x in (4.22). If the assumption ε � χ is removed
and the case with χ ≈ ε is considered, the full lossless version of (5.10) is employed
to evaluate ∂f/∂X. Then the first term on the right-hand side of (5.10) includes
additional terms accordingly. In a similar way to above, Qn is expressed as

Qn =
2ε2ωcpρeTeR

∗

γ + 1

[
−
(
C − 1

C

)
δe
∂1/2f

∂θ1/2
+

(
C + 4CT − 3

C + 4CT

)
λe

He

dHe

dX

∂−1/2f

∂θ−1/2

]
,

(5.14)

where 2ε2ωcpρeTeR
∗/(γ + 1) = 2ε2γωp0R

∗/(γ2 − 1).

5.2. Properties of the equations

Here we examine some solutions to (5.10) and (5.11) in simplified cases and discuss
the properties derived from the equations. If all dissipative effects are ignored, they
are reduced, respectively, to

∂f

∂X
− f ∂f

∂θ
+

1

4He

dHe

dX
f = −K∂g

∂θ
, (5.15)

and
∂2g

∂θ2
+ Ωeg = Ωef. (5.16)

Further, if the array of resonators is absent, i.e. K = 0, (5.15) describes lossless
propagation under the temperature gradient. Then the solution is easily found as

df

dX
= − 1

4He

dHe

dX
f along a characteristic curve

dθ

dX
= −f. (5.17)

Along this, f varies as

f = H−1/4
e F(ξ), (5.18)

with He(0) = 1 where ξ is a parameter specifying the characteristic curve, which starts
from θ = ξ at X = 0, and F(ξ) is the initial value of f at X = 0 and θ = ξ. Using
(5.18), the characteristic curve is expressed as

θ = −F(ξ)

∫ X

0

H−1/4
e dX + ξ. (5.19)

Elimination of the parameter ξ gives the solution for f.
It is found from (5.18) and (5.9) that as the temperature is increased toward the

direction of propagation, the pressure p′ decreases as H
−1/4
e whereas the velocity

u increases as H
1/4
e because ae is proportional to H

1/2
e . When the temperature is

decreased, the reverse holds. Note that p′ and u behave oppositely so that the energy
flux (intensity) p′u does not change. The 1/4 power law is the consequence of the
approximation of the geometrical acoustics (Pierce 1991), in which variations of the
non-uniform equilibrium state due to the temperature gradient are assumed to be
mild over the typical wavelength (χ � 1). Because the power 1/4 is mild, a strong,
small compression pulse (f > 0) imposed initially will evolve into a shock eventually.
This will be formed at a position given by the least positive solution of X which
satisfies the equation

−dF

dξ

∫ X

0

H−1/4
e dX + 1 = 0. (5.20)
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Suppose that the shock is formed when the temperature gradient is absent, i.e. He = 1.
If the positive temperature gradient is imposed so that He > 1 for X > 0, then the
shock is formed at a position of X further down than the one in the case without
the gradient. On the contrary, if the negative gradient is imposed so that He < 1 for
X > 0, then it is formed at a position closer to X = 0.

When the array is connected, a solution is not so easily available. In general,

however, it is easily shown by multiplying (5.15) by H
1/4
e and integrating over the

whole domain of θ that the following conservation holds with respect to X:

dI1

dX
= 0 with I1(X) =

∫ ∞
−∞
H1/4
e fdθ, (5.21)

where f and g are assumed to vanish at both infinities of θ. The conserved quantity
I1 possesses no physical meaning. The first-order quantity in f is the mass flux ρeu,

and is given by H
−1/2
e f except for a numerical factor. But the power of He is different.

Conversely, the mass flux is not conserved. There is another conserved quantity. As is
expected from the result of the geometrical acoustics, the total energy flux p′u which
passes at some position X from θ = −∞ to ∞ is conserved with respect to X. In fact,

since p′u ∝ (ae/a0)f
2 ∝ H

1/2
e f2 by use of the relation (5.9), it follows on multiplying

(5.15) by H
1/2
e f and integrating it over θ that

dI2

dX
= 0 with I2(X) =

∫ ∞
−∞
H1/2
e f2dθ, (5.22)

where f is assumed to vanish at both infinities of θ. This equality results from the
integral

−KH1/2
e

∫ ∞
−∞
f
∂g

∂θ
dθ = −KH1/2

e

[
1

2Ωe

(
∂g

∂θ

)2

+ 1
2
g2

]θ=∞

θ=−∞
= 0, (5.23)

where (5.16) has been used and both g and ∂g/∂θ are assumed to vanish as |θ| → ∞.
In view of (5.22), it is interesting to note that the energy flux cannot be amplified
without recourse to the dissipative effects usually leading to its attenuation.

So we consider the full equations (5.10) and (5.11). Following the same method
that leads to (5.21) and (5.22), we obtain, respectively,

dI1

dX
= H1/4

e

∫ ∞
−∞

(
−δe ∂

1/2f

∂θ1/2
+
λe

He

dHe

dX

∂−1/2f

∂θ−1/2

)
dθ, (5.24)

and

dI2

dX
= 2H1/2

e

∫ ∞
−∞

[(
−δe ∂

1/2f

∂θ1/2
+
λe

He

dHe

dX

∂−1/2f

∂θ−1/2

)
f

−β
(
∂f

∂θ

)2

− δreK

Ωe

∂g

∂θ

∂3/2g

∂θ3/2

]
dθ, (5.25)

where f, ∂f/∂θ, g and ∂g/∂θ → 0 as |θ| → ∞, with the proviso that the integrals I1

and I2 exist. If so, I1 and I2 are no longer conserved with respect to X. In (5.25), the
terms in the first parentheses on the right-hand side are proportional to vb so that
the product with f corresponds to the power input or output, depending on the sign.
On the contrary, the term with β contributes obviously to decrease the energy flux.
The last term results from the friction on the throat wall and physically decreases the



Amplification of energy of nonlinear acoustic waves in a gas-filled tube 395

energy flux, although this is not straightforwardly seen from its form. By using the
identity ∂/∂θ(∂−1/2f/∂θ−1/2) = ∂1/2f/∂θ1/2 to integrate in part the first term on the
right-hand side of (5.25), the terms on this side may be rewritten as

2H1/2
e

∫ ∞
−∞

[(
δe
∂f

∂θ
+
λe

He

dHe

dX
f

)
∂−1/2f

∂θ−1/2
− β

(
∂f

∂θ

)2

− δreK

Ωe

∂g

∂θ

∂3/2g

∂θ3/2

]
dθ. (5.26)

When a compression pulse is imposed initially, f is positive everywhere. If f remains
so in the course of propagation, the derivative of −1/2-order is always positive
by definition. But the quantity ∂f/∂θ necessarily changes its sign with respect to
θ. Provided the integral (5.26) can be made positive by imposing the temperature
gradient suitably, then the energy flux will be amplified against the intrinsic loss.

Using the definitions of δe and λe in (5.12), and (5.8), the quantities in the first
parentheses of (5.26) are expressed as√

νe/ω

εR∗

[
C
∂f

∂θ
+ χ

(
C

4
+ CT

)
Ḣe

He

f

]
. (5.27)

Because the amplification as well as the damping occur by the same action of the
boundary layer, the ratio of the typical thickness of the boundary layer

√
νe/ω to the

reduced radius R∗ is commonly factored out of the brackets. In order to make the
integral (5.26) positive, it is required at least that (5.27) should be made positive. But
because ∂f/∂θ changes sign, the possibility of amplification will depend delicately on
the three values of f, ∂f/∂θ and χ.

6. Evolution of compression pulses
We now proceed to solve an initial-value problem for (5.10) and (5.11) to examine

whether or not the energy flux is amplified. First, we renormalize the equations by
the following replacements to remove the parameters ε and ω used in the derivation
of the equations but left unspecified quantitatively:

(f, g)→ (Kf, Kg) and (θ, X)→ (θ/
√
Ω0, X/K

√
Ω0), (6.1)

with Ω0 = Ωe at X = 0. Then K and Ωe in (5.10) and (5.11) may be set equal to unity
and He, respectively, while θ and X are redefined, respectively, as

θ = ω0

(
t−
∫ x

0

dx

ae

)
, X =

κω0

2

∫ x

0

dx

ae
, (6.2)

with ω0 = ωe at X = 0. The replacements (6.1) are equivalent to the choice that
ε = κ/2 and ω = ω0. The other parameters δe, λe, δre and β are transformed as

(δe, λe, δre, β) → (δe/KΩ
1/4
0 , λe/KΩ

1/4
0 , δre/Ω

1/4
0 , βΩ

1/2
0 /K), (6.3)

and the quantities on the right-hand side take the following values, respectively:(
2C
√
νe/ω0

κR∗
,

(C + 4CT )
√
νe/ω0

4R∗
,

2
√
νe/ω0

r
,
νdeω0

κa2
e

)
. (6.4)

Since νe increases as Te, all the coefficients except for β are proportional to
√
He as

(δe, λe, δre) = (δ0, λ0, δr0)
√
He. (6.5)
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Here and hereafter the subscript 0 which replaces the subscript e designates the
values of the respective quantities at X = 0. In the following, (5.10) and (5.11) with
the variables and the coefficients thus redefined are solved.

The initial-value problem is posed as follows:

f(θ, X = 0) = F(θ) and g(θ, X = 0) = G(θ), (6.6)

where G(θ) is imposed as a solution to (5.11) with f given by F(θ) and cannot be
prescribed independently of F . The initial value F is limited to a compression pulse
so that F is absolutely positive for any value of θ. One interesting choice of F is
the acoustic-solitary-wave solution in the lossless case. Another choice is a smoothed
square pulse. The reason for this choice lies in that ∂f/∂θ vanishes in a plateau region
of the pulse so that the condition for amplification is expected to be met easily.

For the temperature distribution, we assume that Te increases linearly with respect
to x as

Te

T0

= 1 +
x

l
. (6.7)

Then it follows that
ae

a0

=
(

1 +
x

l

)1/2

. (6.8)

According to the definition of X in (6.2), we have

X =
κω0

2

∫ x

0

dx

ae
=
κω0l

a0

[(
1 +

x

l

)1/2 − 1

]
. (6.9)

As a consequence, He(= Te/T0) is expressed in terms of X as follows:

He =

(
1 +

a0

κω0l
X

)2

. (6.10)

Here we evaluate the coefficients δ0, λ0, δr0 and β for tube used in our previous
experiment without imposing the temperature gradient: R = 0.04 m (R∗ = 0.0401 m),
r = 0.00356 m, d = 0.05 m, and κ ≈ 0.2 (Sugimoto et al. 1999). Although there might
be other tubes suitable for amplification, as a first attempt we shall start with this
tube. For air at atmospheric pressure at room temperature 15◦ as reference at X = 0,
we have p0 = 105 N m−2, T0 = 288 K, a0 = 340 m s−1, γ = 1.4, Pr = 0.72, C = 1.47,
CT = 1.14, ν0 = 1.45 × 10−5 m2 s−1, νd0 = 3.61 × 10−5 m2 s−1 with µv/µ = 0.60 and
ω0/2π = 238 Hz. Taking ε = κ/2 = 0.1, it follows that δ0 = 0.0180, λ0 = 0.00370,

δr0 = 0.0532, β = 1.16 × 10−6. For reference, the typical thickness
√
ν0/ω0 is about

0.1 mm. In the following, we consider the temperature distribution given by

He = (1 + 1
4
X)2. (6.11)

For a0/κω0l = 1/4, l corresponds to 4.5 m and the position x = l corresponds to 1.66
for X where the temperature becomes double.

The initial-value problem thus posed is solved numerically. In the case that no
temperature gradient is imposed and the term with β is negligible, (5.10) and (5.11)
are integrated numerically along the ‘characteristics’ defined by dθ/dX = −f, and
if multivaluedness appears in the solution, a discontinuity, i.e. a shock, is fitted into
it (Sugimoto 1992). In the present context, however, since we expect no shocks by
connecting a suitable array, the usual method of finite difference is employed, which is
described briefly. We fix a computation domain in θ and choose grid points separated
by ∆θ equidistantly with the end points at the lower and upper bounds of the domain.
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With f given by F(θ), (5.11) is first solved for g to yield G(θ). This is done by solving
the integro-differential equation. Once g is available by the method to be described
below, we next compute in (5.10) all terms except for ∂f/∂X. The derivatives of
integral order are evaluated by central differences. The derivatives of fractional order
are evaluated by modifying Simpson’s rule. The integral defining the derivative of
order α (α = −1/2 or 1/2) is divided into two integrals as follows:

∂αf

∂θα
=

1√
π

(∫ θ−2∆θ

−∞
+

∫ θ

θ−2∆θ

)
1√
θ − η

∂α+1/2

∂ηα+1/2
f(η)dη, (6.12)

the dependence on X being suppressed. The first integral is computed according to
Simpson’s rule by truncating the lower bound of integration at the lower bound of
the computation domain where f and g may be regarded as being essentially zero.
When the integral consists of an odd number of intervals of ∆θ, the trapezoidal rule
is applied instead but only to the interval bounded by the lower end. The second
integral is calculated analytically by expanding f(η) into a quadratic Taylor series
around η = θ. Then the integral is evaluated by the following formulae for α = −1/2
and α = 1/2, respectively:∫ θ

θ−2∆θ

f(η)√
θ − ηdη =

(
8∆θ

225

)1/2

[f(θ− 2∆θ) + 8f(θ−∆θ) + 6f(θ)] +O(∆θ7/2), (6.13)

and∫ θ

θ−2∆θ

1√
θ − η

∂f

∂η
dη =

(
2

9∆θ

)1/2

[−7f(θ−∆θ)+8f(θ)−f(θ+∆θ)]+O(∆θ5/2). (6.14)

Although the error in (6.14) is worse than in (6.13), it is slightly better than the
error involved in the central difference. At the grid point next to the lower end point,
the scheme must be modified slightly but the same idea in essence is applied to the
interval of width ∆θ. Thus ∂f/∂X is now computed and is approximated by the
simple forward difference at X = 0 and X = ∆X. This yields f(θ,∆X). Updating F by
f newly obtained, (5.11) is solved for g at X = ∆X. Repeating the same procedure,
the solutions are obtained successively. With f thus available, the integrals I1 and I2

are computed according to Simpson’s rule by truncating the lower and upper bounds
of the integration at the respective bounds of the computation domain.

We now describe the method to solve (5.11). Setting ∂2g/∂θ2 = g′′, the derivative of
3/2-order of g is rewritten as that of −1/2-order of g′′, which is solved simultaneously
with f and g. Evaluation of (5.11) at a certain grid point, θ say, provides a relation to
calculate g′′(θ) in terms of known values at all grid points smaller than θ. The central
difference of g′′(θ) thus available gives g(θ + ∆θ) (= 2g(θ) − g(θ − ∆θ) + g′′(θ)∆θ2).
Advancing in this way, g is solved successively toward the upper bound of the
computation domain. In executing this scheme, auxiliary grid points are necessary
outside the computation domain to evaluate ∂f/∂θ, ∂2f/∂θ2 and ∂g/∂θ, especially at
the upper bound, and the values there are extrapolated by a straight line.

6.1. An acoustic solitary wave

We first solve a case where F is prescribed by the solution of the acoustic solitary
wave in the lossless case. The solution F is given in the form of the inverse function
as

−4 tan−1

√
f+ − F
F − f− +

2s√−f+f−
log

∣∣∣∣ [√−f−(f+ − F)−√f+(F − f−)]2

(f+ − f−)F

∣∣∣∣ = |θ|, (6.15)
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Figure 3. Shock and shock-free propagation from the initial profile of the acoustic solitary wave
given by (6.15) with s = 0.5 in the absence of the temperature gradient where the temporal profiles
of f at X = 0, 4, 8, 12, 16 and 20 are shown (a) in the tube without the array of Helmholtz
resonators and (b) with the array having κ = 0.2, respectively. (c) The spatial variations of I2 for
cases (a) and (b) shown, respectively, as the solid and broken lines.

with f± defined by

f± = −2(s− 2
3
)±
√
− 4

3
s+ 16

9
, (6.16)

and the signs ± ordered vertically, where s is a parameter in the range 0 < s < 1
(Sugimoto 1996). The initial value G is very close to the lossless solution given by
F2/2 + sF because δr0 is small. The initial values of I1 and I2 for f = F and He = 1
at X = 0 are given analytically as (Sugimoto 2000)

I1(X = 0) =

∫ ∞
−∞
Fdθ = 8

√
s(1− s) + ( 16

3
− 4s) cos−1 (−2 + 3s)√

4− 3s
, (6.17)

and

I2(X = 0) =

∫ ∞
−∞
F2dθ = 16

√
s(1− s)3 + 8

3
(1− s)(4− 3s) cos−1 (−2 + 3s)√

4− 3s
. (6.18)

We start by demonstrating the effect of the array of resonators. Without the array
being connected, a shock appears and the total energy flux decays significantly by non-
linear damping. In this case, we need only to solve (5.10) withK = 0. Figure 3(a) shows
the temporal profiles of f evolving from the initial profile given by the solitary wave
with s = 0.5 in the tube without a temperature gradient He = 1. The shock emerges at
X ≈ 3.5 and it decays rapidly thereafter. The profiles are computed by the previous
method of characteristics with β neglected (Sugimoto 1992). Note in passing that if the
temperature distribution (6.11) is given to this tube, the shock formation is delayed.
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Figure 4. Spatial evolution from the initial profile of the acoustic solitary wave given by (6.15) with
s = 0.5 in the tube with the array of Helmholtz resonators having κ = 0.2 and in the presence of the
temperature distribution He = (1 +X/4)2: (a) the temporal profiles of f (solid lines) and g (broken
lines) at X = 0, 2 and 4; (b) the spatial variations of I1 and I2 as solid lines, with the broken lines
representing the absence of the temperature gradient; (c) the decay of the tail behind the main
pulse plotted logarithmically as f and fθ1/2 versus θ as solid and broken lines, respectively.

The point is estimated from (5.20) to be X = 4[(1+Xs/8)2−1], Xs being the shock for-
mation point in the case without the temperature gradient. For Xs ≈ 3.5, it is about 4.3.

When the array of resonators is connected, figure 3(b) shows that the profiles
remain smooth and therefore the shock is avoided. If all loss effects were ignored, the
profile would be translated without any change of form in the positive direction of θ
as X increases. In figure 3(b), however, the height decreases slowly due to wall friction.
Incidentally, it is seen that while the propagation speed of the shock is supersonic,
that of the solitary wave is subsonic, because the shock is located in θ < 0 whereas the
peak of the solitary wave is located in θ > 0. Figure 3(c) shows the spatial variations
of I2. The solid line represents I2 in the tube without the array and the broken line
represents I2 in the tube with the array. Just after the shock emerges, the solid line
drops significantly. This is the onset of nonlinear damping. In the early stage (X < 4),
however, the decay rate is a little larger for the broken line than for the solid line.
This is due to the wall friction at the throat.

Let us now examine the effect of the temperature gradient. Figure 4(a) shows the
temporal profiles of f and g as the solid and broken lines, respectively, at X = 0, 2
and 4 from the initial profile given by the solitary wave with s = 0.5 in the presence
of the temperature distribution (6.11). It is seen that f decreases, i.e. the pressure p′
decreases, almost in accordance with the −1/4 power law. In fact, at X = 4 where

He = 4 and H
−1/4
e = 1/

√
2 = 0.707, the peak height is reduced to about 70% of the

initial one. As X increases, it is also seen that f and g tend to be equal to each other.
This can be understood from (5.11) because He (therefore Ωe in (5.12)) increases as X
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increases (Sugimoto & Tsujimoto 2001). Although the pressure decreases, the velocity

u increases as H
1/2
e f where H

1/2
e doubles at X = 4. Yet it is not known whether or

not the total energy flux increases. Figure 4(b) depicts the spatial variations of I1 and
I2 as the solid lines where the broken lines represent, for reference, the case without
the temperature gradient. With the temperature gradient, the rate of decrease of I2

becomes slower for X < 2.3 than without it, the broken line decaying almost linearly.
But no increase can be seen and the total energy flux is not amplified.

The computations are carried out in the domain −16 6 θ 6 64 by taking ∆θ = 0.02
and ∆X = 0.00125. Because a long tail in θ tends to appear behind the main body of
the pulse, the upper bound of the domain is chosen large enough to include as much
as possible of the tail. Figure 4(c) plots f and fθ1/2 versus θ on logarithmic scales
to show how slowly the tail decays. The solid lines represents f at X = 0, 2 and 4.
At X = 0, since f decrease exponentially, no tail exists. The broken line represents
fθ1/2 at the respective values of X. The factor θ1/2 is suggested by the linear theory
in Appendix B. Since each broken line appears to approach a constant as θ increases,
it is suggested that the decaying behaviour of f is close to θ−1/2 for large values of
θ. If this is the case as θ → ∞, I1 and I2 would tend to diverge as the upper bound
is taken larger. The values of I1 and I2 are compared when taking the upper bound
of the domain to be 32, 48 and 64, respectively, with ∆θ and ∆X fixed. It is verified
that I1 increases with the upper bound whereas I2 remains almost unchanged. The
latter may be anticipated because the behaviour θ−1/2 for f gives rise to a very weak,
logarithmic divergence in I2. Even if the divergence occurred in a rigorous sense, we
are interested in the possibility of amplification of energy flux of the main body of
the pulse, and are therefore led to the conclusion that no amplification takes place.
In other cases with s = 0.2 and 0.8, no amplification is obtained either. Among the
three values of s, the rate of decrease in I2 becomes smaller as s increases.

We checked the accuracy of computations by comparing the values of I1 and I2

obtained directly by integrating H
1/4
e f and H

1/2
e f2 over the entire computation domain

of θ, with those obtained by integrating the differential equations (5.24) and (5.25)
with respect to X from X = 0. When the integrations are limited to a finite range of
θ, (5.24) and (5.25) are subjected to modifications due to the contributions from the
upper bound in particular. But they are regarded as being comparable with the errors
involved. The relative error remains within the order of 10−3 at worst. At X = 0, the
exact values of I1 and I2 are 4+(10/3) cos−1(−1/

√
10) ≈ 10.30 whereas the numerical

values are 10.23 and 10.25, respectively. Although the accuracy may be improved by
taking a finer grid, we are satisfied with this order of error to avoid requiring a large
capacity in computation.

We now consider why the energy flux is not amplified. Figure 2 shows the graphs
of F for the solitary wave solution with s = 0.5 and its fractional derivatives of
order 1/2 and of −1/2, drawn as solid, broken and dotted lines, respectively. Using
these, figure 5 shows the profile of vb at X = 0, as the solid line, except for the
factor outside the parentheses in (5.13), where the first and second terms are drawn
as the broken and dotted lines, which correspond to the first and second terms in
(5.10), respectively. It is found that vb is not positive enough to do work on the
acoustic main flow. If the temperature gradient is increased, amplification occurs
but it soon turns into damping. Further increase in the temperature gradient tends
to invalidate the basic assumption that the temperature gradient is gentle. In this
connection, we go back to consider physically the situation corresponding to the
parameters chosen because the replacement (6.1) might have obscured it. Since ω has
been chosen to be ω0, the meaning of χ has been lost. By the choice (6.11), we have
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Figure 5. Velocity vb at the edge of the boundary layer at X = 0 where the solid line represents
the temporal profile of (5.13) except for the factor outside of the parentheses, while the broken and
dotted lines represent, respectively, the first and second terms.
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Figure 6. Spatial evolution from the initial profile of the acoustic solitary wave given by (6.15) with
s = 0.8 in the tube with the array of Helmholtz resonators having the larger value of κ = 0.4 and
in the presence of the steeper temperature distribution He = (1 + X/2)2: (a) the temporal profiles
of f (solid lines) and g (broken lines) at X = 0, 1 and 2; (b) the spatial variations of I1 and I2 as
the solid lines, with the broken lines representing the absence of the temperature gradient; (c) the
decay of the tail behind the main pulse plotted logarithmically as f and fθ1/2 versus θ as solid and
broken lines, respectively.

a0/ω0l = (a0/ωl)ω/ω0 = κ/4. If a typical angular frequency ω for the solitary wave
is defined as an inverse of a half-width, ω0/ω becomes about 8 for s = 0.5 (Sugimoto
1996). Thus it is found that χ(= a0/ωl) takes the value 0.4 so that the ratio χ/ε = 4.

As the results so far obtained are contrary to our expectation, we now look for the
possibility of amplification by changing conditions of the tube. For amplification, a
consideration based on (5.26) and (5.27) suggests that while χ should be taken larger,
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of course, ∂f/∂θ should be made small. In this respect, the choice of a large values
of s is preferable because the height of the solitary wave (f+ in (6.16)) becomes lower
as s increases so that the magnitude of ∂f/∂θ becomes smaller. Also, the choice
of a large value of ε, i.e. κ, is preferable to reduce δe for the friction loss. So we
consider a case where s is chosen to be 0.8, while κ is increased to 0.4 so that ε = 0.2.
Furthermore we impose the steeper temperature gradient given by He = (1 + X/2)2.
Figure 6 shows the results corresponding to figure 4. The computations are carried
out in the domain −20 6 θ 6 40 with ∆θ = 0.01 and ∆X = 0.00125. The quantitative
behaviour in figures 6(a) and 6(c) is similar to figures 4(a) and 4(c), respectively.
But figure 6(b) indicates that I2 at X = 2 (the solid line) increases by about 1.5% of
the initial value, whereas I2 decreases by about 2% when no temperature gradient is
imposed (the broken line). This demonstrates that the energy of the acoustic solitary
wave can be amplified by choosing suitable conditions. It is revealed, however, that
because the solitary wave has a fixed profile for a given value of s, it is a delicate
matter to fulfil the conditions for amplification. For this, initial profiles should have
some degrees of freedom. In passing, we note the error involved in the computations.
At X = 0, the exact values of I1 and I2 are 3.2 + (6.4/3) cos−1(1/

√
10) ≈ 5.865 and

1.28 + (2.56/3) cos−1(1/
√

10) ≈ 2.346, respectively, whereas the numerical values are
5.853 and 2.339, respectively. There is accompanied by the relative error of order of
10−3. In view of this, the amplification is meaningful.

6.2. A square pulse

Next we solve the evolution from a smoothed square pulse given by

F(θ) =
1

2

[
tanh

(
θ

b
+
τ

2

)
− tanh

(
θ

b
− τ

2

)]
, (6.19)

where b (> 0) corresponds to
√
Ω0 and the duration bτ (> 0) is left as an adjustable

parameter. For b� 1, the profile of G is almost identical to that of F . The integrals
I1 and I2 at X = 0 are calculated, respectively, to be

I1(X = 0) =

∫ ∞
−∞
Fdθ = b log

[
1 + tanh( 1

2
τ)

1− tanh( 1
2
τ)

]
≈ bτ for τ� 1, (6.20)

and

I2(X = 0) =

∫ ∞
−∞
F2dθ = 1

2
bτ[tanh( 1

2
τ) + coth( 1

2
τ)]− b ≈ b(τ− 1) for τ� 1. (6.21)

First we show the evolution from the pulse with b = 8 and τ = 10 in the tube
without the temperature gradient. The choice of the large value of b is suggested by
the previous finding that no shock emerges if Ω0 � 1 (Sugimoto 1992). Of course
without the array connected, the shock is formed at X ≈ 2b = 16. As b becomes
smaller, it occurs at a position closer to X = 0. The total energy flux of the square
pulse chosen is about seven times larger than that of the acoustic solitary wave shown
in figure 4. Because the evolution from this pulse is qualitatively the same as that
shown in figure 3, we proceed to consider the case with the array of resonators having
κ = 0.2. Figure 7(a) depicts the temporal profiles of f at X = 0, 16 and 32 in the
absence of the temperature gradient. No profiles of g are drawn because f ≈ g. No
shock is seen to emerge, and instead the pulse tends to oscillate as X increases. It is
suspected that the oscillations will eventually split into a sequence of solitary waves.
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Figure 7. Spatial evolution from the initial profile given by the square pulse (6.19) with b = 8 and
τ = 10 in the tube with the array of Hemholtz resonators having κ = 0.2 and in the absence of
the temperature gradient: (a) the temporal profiles of f at X = 0, 16 and 32; and (b) the spatial
variations of I1 and I2.
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Figure 8. Spatial evolution from the initial profile given by the square pulse (6.19) with b = 8
and τ = 10 in the tube with the array of resonators having κ = 0.2 and in the presence of the
temperature distribution He = (1 + X/4)2: (a) the temporal profiles of f at X = 0, 2, 4, 6 and 8;
(b) the spatial variations of I1 and I2 as solid lines, with the broken lines representing the absence
of the temperature gradient; (c) the decay of the tail behind the main pulse plotted logarithmically
as f and fθ1/2 versus θ as solid and broken lines, respectively.

Figure 7(b) shows the spatial variations of I1 and I2. The decay of I2 is seen to be
gentle and almost linear.

When the temperature distribution (6.11) is imposed in the tube with κ = 0.2, the
profiles change more rapidly in the early stage of evolution. Figure 8(a) shows the
temporal profiles of f at X = 0, 2, 4, 6 and 8 for b = 8 and τ = 10. The height of the
square pulse decrease as X increases. In this case as well it is found that the height
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Figure 10. Heat flux Qn into the boundary layer from the wall at X = 4 where (a) shows, in the
solid line, the temporal profile of (5.14) except for the factor outside of the square brackets taking
the value 1.7 × 102 kW m−2, while the broken and dotted lines represent, respectively, the first and
second terms, and (b) logarithmic-scale plots of Qn and Qnθ

1/4, Qn without the factor, versus θ as
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of the pulse at θ = 0 obeys the −1/4 power law of He roughly. Figure 8(b) shows
the spatial variations of I1 and I2 up to X = 8 where the broken lines represent,
for reference, those in the absence of the temperature gradient, He = 1. It is found
that I2 increases from 72 to about 77 at X = 4, i.e. about 7%, whereas I1 increases
considerably. The smaller increase in I2 is brought about by the wall friction on
the throat wall, i.e. due to the term associated with g in (5.25). The computations
are carried out in the domain −100 6 θ 6 1200 with ∆θ = 0.4 and ∆X = 0.01.
Computing in a smaller domain −100 6 θ 6 600, shows that I1 changes with the
upper bound whereas I2 remains almost unchanged. Figure 8(c) shows the decay of
the tail by plotting f and fθ1/2 versus θ, in logarithmic scales, as the solid and broken
lines, respectively. In this case as well, since f seems to decay as θ−1/2, I2 may tend
to diverge in the rigorous sense as the upper bound is taken larger. But because I2

increases without taking any account of the tail outside the domain, we may conclude
that the energy flux of the main body of the pulse is amplified by the temperature
gradient.

Here we check the variations of vb graphically. Figure 9(a) displays the temporal
profile of vb at X = 4 as the solid line, except for the factor outside the parentheses of
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(5.13), where the broken and dotted lines represent, respectively, the first and second
terms. The factor outside the parentheses takes the value 0.50 m s−1 for ε = κ/2 = 0.1
and ω/2π = ω0/2π = 238 Hz. Because the pulse width is much larger than that of
the solitary wave and ∂f/∂θ almost vanishes in the plateau region of f, it is evident
that the condition for amplification is easily met. Figure 9(b) shows the decaying
behaviour of vb at X = 4 for a large value of θ by logarithmic plots of vb and vbθ

1/4

versus θ, as the solid and chain lines, respectively, vb without the factor. It appears
that vb decays very slowly and close to θ−1/4 for large values of θ. This behaviour is
mainly contributed from the second term in (5.13) because the first term appears to
decay close to θ−3/2.

We also show in figure 10(a) the heat flux at X = 4 where the solid line represents
the profile of (5.14) except for the factor outside of the square brackets, while the
broken and dotted lines represent, respectively, the first and second terms. The factor
takes the value 1.7×102 kW m−2.The coefficients (C−1)/C and (C+4CT−3)/(C+4CT )
take the values 0.32 and 0.50, respectively, and the ratio is about 1 to 1.6. Comparing
this with (5.13), it is found that the effect of the temperature gradient (second term)
appears stronger for Qn than for vb. In consequence, the maximum in Qn appears
greater than that in vb in relation to the respective minimum while Qn switches to
be positive earlier than vb. But it may be said that Qn is almost in phase with vb.
Finally we note the decaying behaviour of Qn at X = 4 for a large value of θ.
Figure 10(b) shows logarithmic plots of Qn and Qnθ

1/4 versus θ, as the solid and chain
lines, respectively, Qn without the factor. This behaviour is quantitatively the same,
of course, as that of vb. If the asymptotic behaviour as θ → ∞ is close to θ−1/4, it
results that an infinite amount of heat flows into the boundary layer in total.

7. Conclusion
The propagation of nonlinear acoustic waves in a gas-filled tube under a temper-

ature gradient has been formulated by taking account of the boundary layer and of
an array of Helmholtz resonators. The mechanism of amplification of the energy flux
is elucidated from the standpoint of the action of the boundary layer. Also demon-
strated is the merit of the use of array of resonators to avoid the undesirable loss
of an energy flux associated with the emergence of a shock. When the temperature
gradient is positive and appropriate, the boundary layer can ‘pinch’ the acoustic main
flow, to pump energy into the waves. By deriving the nonlinear wave equations for
unidirectional propagation, the evolution of the acoustic solitary wave and of the
square pulse has been examined and the spatial variations of the total energy flux
have been obtained. It is revealed that the total energy flux can indeed be amplified
against the intrinsic loss.

In the case of an acoustic solitary wave, however, the result is negative in the tube
with the array having κ = 0.2 chosen as a first attempt. Comparing with the case
of the square pulse, one reason is that once the tube is chosen, i.e. κ is fixed, the
form of the solitary wave is uniquely determined by the value of s and no other free
parameters are involved. For a given temperature gradient, therefore, it can occur that
the condition of amplification is not met for any value of s. Then the geometry of the
tube must be modified. In fact, when κ is increased to 0.4 and a steeper temperature
gradient is imposed, it is found that amplification of the energy flux takes place. Note
in passing that there are combinations of κ and a temperature distribution such that
the total energy flux is almost maintained at the initial value over a large value of X.
For example, this is the case of the solitary wave with s = 0.8 in the tube with the
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array having κ = 0.2 and the temperature gradient He = (1 +X/2)2. In view of these
results, the choice of the geometry of the tube for a given temperature gradient is
found to be crucial to the amplification of energy flux of the acoustic solitary wave.

For simplicity in elucidation of the mechanism of amplification, we have assumed
that there are none of the stacks usually employed in thermoacoustic heat engines.
Even without use of the stacks, it is shown that the thermoacoustic effects can amplify
the energy flux. Their use will enhance the amplification substantially by increasing
δe and λe as though the tube diameter were smaller. To achieve further amplification,
CT should be taken larger and C smaller by selecting a gas having γ close to unity
and a smaller value of Pr.

Imagine that a temperature gradient, positive and negative, is imposed along a
looped tube and that a compression pulse is propagated around the tube unidirec-
tionally. If the pulse could gain energy after one turn, it follows that the pulse has
received heat to transform it into kinetic and potential energy. Furthermore if this
process could be repeated cyclically by extracting the energy gained and reshaping
the pulse, this is a thermoacoustic prime mover utilizing the pulse. Of course, instead
of the pulse, we may exploit a continuous wavetrain propagating unidirectionally.
In reality, the pulse will be used in an initial ‘ignition’ process and it will eventually
transform into the wavetrain. In any event, to gain more output, the pressure level
is required to be set higher. Then emergence of a shock will be inevitable, espe-
cially where the gradient is negative. The combined use with an array of Helmholtz
resonators is expected to resolve the problem.

The authors would like to thank the referees for their valuable comments. This work
has been supported by the Grants-in-Aid from the Japan Society for the Promotion
of Science and also from The Mitsubishi Foundations, Tokyo, Japan.

Appendix A. Explicit form of the boundary-layer solutions
Here, we describe briefly the method to solve (4.17) and (4.18) under the boundary

conditions (4.19) and the matching conditions (4.20). Defining the transform by a
caret, for example,

F{u} ≡ 1√
2π

∫ ∞
−∞
u(x, t) exp(iωt)dt ≡ û(x, ω), (A 1)

(4.17) is solved to yield

ˆ̌u = −ûE1, (A 2)

where E1, and E2 below, are defined, respectively, by

E1 = exp[−(σ/νe)
1/2n], E2 = exp[−(Prσ/νe)

1/2n], (A 3)

with σ = −iω and the real part of σ1/2 is taken positive. Similarly, (4.18) is solved as

ˆ̌
T = −(T̂ − T̂e)E2 +

Pr

(1− Pr)
dTe
dx

û

σ
(E2 − E1). (A 4)

The Fourier transform of vb is calculated by

v̂b =

∫ ∞
0

[
σ

(
ˆ̌
T

Te

)
− ∂ ˆ̌u

∂x
+

1

Te

dTe
dx

ˆ̌u

]
dn. (A 5)
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Substituting (A 2) and (A 4) into (A 5), and integrating with respect to n, v̂b is obtained
as

v̂b = −
√
νe√
Pr
σ1/2

(
T̂ − T̂e
Te

)
+
√
νeσ

−1/2 ∂û

∂x
+

(
1

2
− 1

1 +
√
Pr

) √
νe

Te

dTe
dx

σ−1/2û, (A 6)

where use has been made of the relations ν−1
e dνe/dx = T−1

e dTe/dx,

∂E1

∂x
=

1

2Te

dTe
dx

(
σ

νe

)1/2

nE1,

∫ ∞
0

∂E1

∂x
dn =

1

2Te

dTe
dx

(
σ

νe

)−1/2

. (A 7)

Using (4.9) to replace the temperature, we have

v̂b =

(
1 +

γ − 1√
Pr

)√
νeσ

−1/2 ∂û

∂x
+

(
1

2
+

1√
Pr + Pr

) √
νe

Te

dTe
dx

σ−1/2û. (A 8)

To make an inverse transform, we note the following formula:

F
{
∂αu

∂tα

}
= σαû, (A 9)

where α = −1/2 or 1/2. Using this formula, we obtain immediately vb in the form of
(4.22). The temperature gradient at n = 0 is also obtainable as

∂
ˆ̌
T

∂n

∣∣∣∣∣
n=0

=

√
Pr√
νe

[
σ1/2(T̂ − T̂e) +

√
Pr

1 +
√
Pr

dTe
dx

σ−1/2û

]
. (A 10)

Using (4.9), (A 10) is alternatively written in terms of û alone as

∂
ˆ̌
T

∂n

∣∣∣∣∣
n=0

= −
√
Pr√
νe

[
(γ − 1)Teσ

−1/2 ∂û

∂x
+

1

1 +
√
Pr

dTe
dx

σ−1/2û

]
. (A 11)

Appendix B. Linear initial-value problem
In order to examine the asymptotic behaviour of the tail, it is instructive to

consider solutions to the linearized equations of (5.10) and (5.11) under the initial
conditon given by f(θ,X = 0) = δ(θ), δ(θ) being the delta function. The temperature
distribution is assumed to be given by

He =

(
1 +

X

m

)2

, (B 1)

where m (6= 0) is an arbitrary constant. We set f and g to be H
−1/4
e ϕ(θ, X) and

H
−1/4
e ψ(θ, X), respectively, to remove the lossless effect of the temperature gradient.

Rewriting (5.10) linearized, and (5.11) in terms of ϕ and ψ, and using (6.5) and
Ωe/Ω0 = He, it follows that

∂ϕ

∂X
= −δ0

(
1 +

X

m

)
∂1/2ϕ

∂θ1/2
+

2λ0

m

∂−1/2ϕ

∂θ−1/2
−K∂ψ

∂θ
, (B 2)

and

∂2ψ

∂θ2
+ δr0

(
1 +

X

m

)
∂3/2ψ

∂θ3/2
+ Ω0

(
1 +

X

m

)2

ψ = Ω0

(
1 +

X

m

)2

ϕ. (B 3)
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Applying to (B 3) the Fourier transform with respect to θ (whose definition is
given by (A 1) with t replaced by θ), ψ̂(ω,X) is expressed in terms of ϕ̂(ω,X) as
Ω0(1 +X/m)2ϕ̂/D(ω,X), where D is defined as

D(ω,X) = Ω0

(
1 +

X

m

)2

+ δr0(−iω)3/2

(
1 +

X

m

)
− ω2. (B 4)

With ψ̂ substituted into (B 2) as transformed, and ϕ̂(ω, 0) = 1/
√

2π, ϕ̂ is solved as

ϕ̂ =
1√
2π

[
D(ω, 0)

D(ω,X)

]α1
[
W (ω, 0)

W (ω,X)

]α2

× exp

[
−δ0(−iω)1/2

(
X +

X2

2m

)
+

2λ0

m
(−iω)−1/2X + iKωX

]
, (B 5)

where W (ω,X) is defined as

W (ω,X) =
D+(ω,X)

D−(ω,X)
=

2Ω0(1 +X/m) + δr0(−iω)3/2 + (4Ω0ω
2 + iδ2

r0ω
3)1/2

2Ω0(1 +X/m) + δr0(−iω)3/2 − (4Ω0ω2 + iδ2
r0ω

3)1/2
, (B 6)

with D+D− = 4Ω0D, and α1 and α2 given by

α1 =
mKδr0

2
√

2Ω0

|ω|5/2(1− isgnω) and α2 =
imKω3(2Ω0 + iδ2

r0ω)

2Ω0(4Ω0ω2 + iδ2
r0ω

3)1/2
, (B 7)

with (−iω)±1/2 = (1∓ isgnω)|ω|±1/2/
√

2, the signs ordered vertically, and (−iω)3/2 =

−(1 + isgnω)|ω|3/2/√2.

With ϕ̂ available, the integrals of ϕ (= H
1/4
e f) and ϕ2 (= H

1/2
e f2) over the whole

range of θ are obtained, respectively, by∫ ∞
−∞
ϕ dθ = lim

ω→0

√
2πϕ̂(ω,X), (B 8)

and by Parseval formula ∫ ∞
−∞
ϕ2dθ =

∫ ∞
−∞
| ϕ̂ |2dω. (B 9)

Examining the asymptotic behaviours of ϕ̂ as ω → 0 and |ω| → ∞, it is found
that when m is positive, both integrals on the right-hand sides diverge due to the
contribution of exp[2λ0(−iω)−1/2X/m] from the vicinity of ω = 0 for X > 0. Hence
I1 and I2 become infinite in the case of the positive temperature gradient.

Although the full inversion of ϕ̂ is difficult to execute, we look at how the integrals
diverge. Because the divergence is due to the second term on the right-hand side of
(B 2), we consider, for simplicity, the case without the array, i.e. K = α1 = α2 = 0.
Assuming that λ0 � δ0, (B 2) is solved in terms of the asymptotic expansion of λ0 by
setting ϕ = ϕ0+λ0ϕ1+. . . . Then ϕ̂0 is given by (1/

√
2π) exp[−δ0(X+X2/2m)(−iω)1/2].

Using the formulae (see Oberhettinger 1957, pp. 27 and 138), this is inverted to yield

ϕ0 =
δ0(X +X2/2m)

2
√
π|θ|3/2 exp

[
−δ

2
0(X +X2/2m)2

4|θ|
]
h(θ), (B 10)

where h(θ) is a unit step function. It is found that through wall friction, the initial
delta function spreads backward (θ > 0) to form a tail decreasing monotonically as
θ−3/2. Yet the integral of ϕ0 is preserved at the initial value of unity whereas that of
ϕ2

0 remains finite for X > 0 but decays as X increases, although the integral of ϕ2



Amplification of energy of nonlinear acoustic waves in a gas-filled tube 409

cannot be defined at X = 0 or may be interpreted to be infinite. Proceeding to the
first-order problem, ϕ̂1 is given by (2X/m)(−iω)−1/2ϕ̂0, which may also be obtainable
from the formal expansion of the second factor in the exponential of (B 5). This can
be transformed inversely by using the formulae (Oberhettinger 1957, pp. 27 and 139)
to

ϕ1 =
2X

m

∂−1/2ϕ0

∂θ−1/2
=

2X√
πm|θ|1/2 exp

[
−δ

2
0(X +X2/2m)2

4|θ|
]
h(θ). (B 11)

This shows that the temperature gradient yields a tail which decreases as θ−1/2 more
slowly than that due to the wall friction. The tail of θ−1/2 will make I1 and I2 diverge.
But note that the asymptotic solution thus obtained is not uniformly valid as θ →∞
because λϕ1 becomes comparable with ϕ0 or larger than it. On the other hand, when
m is negative, (B 8) and (B 9) indicate that the integrals of the full solution converge.
In this case, some cancellations occur to yield finite values of the integrals.
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